Density and gradient estimates for non degenerate Brownian SDEs with unbounded measurable drift
نویسندگان
چکیده
We consider non degenerate Brownian SDEs with Hölder continuous in space diffusion coefficient and unbounded drift linear growth. derive two sided bounds for the associated density pointwise controls of its derivatives up to order under some additional spatial continuity assumptions on drift. Importantly, estimates reflect transport initial condition by through an auxiliary, possibly regularized, flow.
منابع مشابه
Flow of diffeomorphisms for SDEs with unbounded Hölder continuous drift
We consider a SDE with a smooth multiplicative non-degenerate noise and a possibly unbounded Hölder continuous drift term. We prove existence of a global flow of diffeomorphisms by means of a special transformation of the drift of Itô-Tanaka type. The proof requires non-standard elliptic estimates in Hölder spaces. As an application of the stochastic flow, we obtain a Bismut-Elworthy-Li type fo...
متن کاملOptimal Bounds for the Densities of Solutions of Sdes with Measurable and Path Dependent Drift Coefficients
We consider a process given as the solution of a stochastic differential equation with irregular, path dependent and time-inhomogeneous drift coefficient and additive noise. Explicit and optimal bounds for the Lebesgue density of that process at any given time are derived. The bounds and their optimality is shown by identifying the worst case stochastic differential equation. Then we generalise...
متن کاملConvergence of the Euler–Maruyama method for multidimensional SDEs with discontinuous drift and degenerate diffusion coefficient
We prove strong convergence of order [Formula: see text] for arbitrarily small [Formula: see text] of the Euler-Maruyama method for multidimensional stochastic differential equations (SDEs) with discontinuous drift and degenerate diffusion coefficient. The proof is based on estimating the difference between the Euler-Maruyama scheme and another numerical method, which is constructed by applying...
متن کاملRegularity of density for SDEs driven by degenerate Lévy noises*
By using Bismut’s approach to the Malliavin calculus with jumps, we study the regularity of the distributional density for SDEs driven by degenerate additive Lévy noises. Under full Hörmander’s conditions, we prove the existence of distributional density and the weak continuity in the first variable of the distributional density. Moreover, under a uniform first order Lie’s bracket condition, we...
متن کاملA strong order 1/2 method for SDEs with discontinuous drift and degenerate diffusion
When solving certain stochastic optimization problems, e.g., in mathematical finance, the optimal control policy is of threshold type, meaning that it depends on the controlled process in a discontinuous way. The stochastic differential equations (SDEs) modeling the underlying process then typically have discontinuous drift and degenerate diffusion parameter. This motivates the study of a more ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2021
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2020.09.004